
170 THE S T R U C T U R E S  OF Z E O L I T E  S O R P T I O N  C O M P L E X E S .  I. 

FISCHER, K. F. & MEIER, W. M. (1965). Fortschr. Miner. 
42, 50. 

HASSLE, O. & ROMMING, C. (1962). Quart. Rev. Chem. Soc. 
Lond. 16, 1. 

HERSH, C. K. (1961). Molecular Sieves. New York: Rein- 
hold. 

HOWELL, P. A. (1960). Acta Cryst. 13, 737. 
HUGHES, E.W. (1941). J. Amer. Chem. Soc. 63, 1737. 
International Tables for X-ray Crystallography (1962). Vol. 

III. Birmingham: Kynoch Press. 
KARLE, I. L. (1955). J. Chem. Phys. 23, 1739. 
KITAIGORODSKII, A. I., KHOCIANOVA, T. L. • STRU(~KOV, 

YU. T. (1953). Zh. fiz. Khim. 27, 780. 
LOEWENSTEIN, W. (1954). Amer. Min. 39, 92. 
MEIER, W. M. & SHOEMAKER, D. P. (1967). Z. Kristallogr. 

In the press. 
RANK, D. H. t~ BALDWIN, W. M. (1951). J. Chem. Phys. 19, 

1210. 

REED, T. B. & BRECK, D. W. (1956). J. Amer. Chem. Soc. 
78, 5972. 

SEFF, K. t~ SHOEMAKER, D. P. (1967). Acta Cryst. To be 
published. 

SHOEMAKER, D. P. (1964). DISTAN Bond Distance, Angle, 
and Dihedral Angle Program, M.I.T. 

SHOEMAKER, D. P. & SEFF, K. (1967). Acta Cryst. To be 
published. 

SLY, W. G., SHOEMAKER, D. P. & VAN DEN HENDE, J. H. 
(1962). ERFR2 Fourier Summation Program, CBRL- 
22M-62, Esso Research and Engineering Com)any. 

SMITH, J. V. & BAILEY, S. W. (1963). Acta Cryst. 16, 801. 
VAND, V. & DUNNING, A. J. (1965). Abstract N-7, American 

Crystallographic Association Summer Meeting, Gatlin- 
burg, Tennessee. 

WELLS, A. F. (1962). Structural Inorganic Chemistry, p. 810. 
London: Oxford Univ. Press. 

YATES, D. (1965). Private Communication. 

Acta Cryst. (1967). 22, 170 
Mean-Square Atomic Displacements in Zinc 

BY T. H. K. BARRON AND R.W. MUNN 

Department of  Theoretical Chemistry, The University, Bristol, England 

(Received 22 July 1966) 

The mean-square atomic displacements (u~,) and (u~ z ) are calculated in the range 0-600°K from thermo- 
dynamic and inelastic neutron-scattering data. Thermodynamic data alone give (2u~ + z u~), which is 
separated into its components 2(u~) and (u~) with the aid of the lattice-dynamical model of DeWames, 
Wolfram & Lehman and the neutron-diffraction data on which it is based. Earlier values derived from 
the Debye-Waller effect in X-ray scattering are discussed briefly. 

Introduction 

For a hexagonal close-packed structure, the intensity 
of a Bragg reflexion varies as exp ( - 2 M ) ,  with 

M=81rZ(sin OlX)2[(u%) sin 2 ~ ,+(u~)cos  2 ~,1 ; (1) 

here 0 is the Bragg angle, 2 is the wavelength of the 
radiation, (u~) and (u~) are the mean-square atomic 
displacements in directions parallel and perpendicular 
to the hexagonal axis,* and V is the angle between the 
hexagonal axis and the normal to the reflecting plane 
(Zener, 1963; Blackman, 1956). Table 1 lists various 
published values of (u~) and (u~) for zinc, derived 
mainly from X-ray data. Although there is fair agree- 
ment between some of the measurements, they do not 
provide definitive values for ( u ~ ) a n d  (u~) and their 
likely errors. In this paper we use thermodynamic and 
inelastic neutron-scattering data to derive such defini- 
tive values for (u~) and (u.Z). 

* Maradudin & Flinn (1963) have shown that for an an- 
harmonic crystal the Debye-Waller factors do not depend 
only on the mean-square atomic displacements, so that 
equation (1) is ideally not strictly true. However, their calcula- 
tions indicate that this effect is normally negligible. 

Use of thermodynamic data 

From thermodynamic data we can calculate the total 
mean-square amplitude (2uZ~ + u~) as a function of both 
temperature and strain, without recourse to any force- 
constant model (Feldman & Horton, 1963; Salter, 
1965; for a simple review see Barron, Leadbetter, 
Morrison & Salter, 1966). (2u~+u~) is conveniently 
represented by an equivalent Debye temperature 
OM(T; a,c); this is defined as the characteristic tem- 
perature of that Debye distribution which gives the 
actual value of (2u~ + u~) at temperature T and lattice 
parameters a, c. Comprehensive tables relating (u]. + 

2 2 ~)M uy+Uz) and are available (Benson & Gill, 1966). 
From the results of an analysis of the heat capacity 
of zinc (Barron & Munn, 1966) we find that the low- 
and high-temperature expansions (Salter, 1965) for 
OM(T; ao, Co) are respectively 

OM(T; ao, Co) = 
221[ l+0 .93(T/100)z-3 .6(T/100)4+. . . ] ,  (2) 

and 
OM(T; a0, Co) = 224"511 + 

O'OO26(lO0/T)4-O.OO12(lOO/T)6+...], (3) 
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where ao and Co denote the equil ibrium strain at zero 
temperature;  aT and CT will be used to denote the 
equi l ibr ium strain at temperature T. The convergence 
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Fig. 1. Temperature dependence of characteristic Debye tem- 

peratures for zinc. Full lines: from low- and high-tempera- 
ture expansions; dashed lines: interpolation ; • OM(a7 ', CT) 
from DeWames, Wolfram & Lehman (1965), corrected for 
the effect of thermal expansion. 
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Fig.2. Comparison of published values for (u=2)and (u.Z)at 

298°K with the thermodynamic value for (2uxZ-b Uz2). The 
straight lines correspond to the limits in equation (6). 
o DeWames, Wolfram & Lehman (1965); A Ryba (1960); 
• Wollan & Harvey (1937); © Jauncey & Bruce (1937). 

of  such series is made  more  rapid by an Euler trans- 
formation (Sack, Maradud in  & Weiss, 1961); here we 
use 

t =  (100/T)2/[3 + (1013/T)2]. (4) 

From the series in t equivalent to (2) and (3) and from 
a graphical interpolat ion at intermediate temperatures 
we obtain the values of OM(T; ao, Co) shown in Fig. 1. 
The values of OM(T; aT, CT) in Fig. 1 are derived from 
OM(T; ao, Co) by means of the relation 

OM(a g , e T )/ OM(ao, Co) = 

(ao/aT) 2~'± (-~) (Co/Cr)~', (-:) ; (5) 

here 8_t(-2) and 8 , , ( -2 )  are Griineisen parameters 
which can be calculated with the use of  thermal  expan- 
sion and other the rmodynamic  data (Barron & Munn,  
1966). Equat ion (5) is strictly valid for zinc only above 
100°K, but  its use at lower temperatures introduces 
negligible errors. 

The estimated errors in 0 M are + 2 ° K  at low tem- 
paratures, and + 3°K at intermediate and high tem- 
peratures. At  low temperatures the errors come mainly  
from uncertainties in the heat-capacity analysis , but  
at room temperature constant-volume anharmonic  ef- 
fects may already be appreciable. Study of other con- 
stant-volume effects in a variety of solids suggests that 
for zinc the effect on 0 M is unlikely to exceed about  
3070 of the effect due to thermal  expansion. 

At  298°K we find that  ( 2 u ~ + u ~ ) = ( 0 . 0 4 4 6 +  
0.0012) A 2. One of  the published sets of  values in 
Table 1 differs widely from this figure, and none of  
them falls strictly within the l imits of  error. This is 
illustrated in Fig.2, where to be consistent with the 
thermodynamic  result the true values of (u z )  and (u~) 
(in A z) must  lie between the straight lines 

2(u~> + (u~) = 0.0446 + 0.0012. (6) 

Thermodynamic  data alone can tell us no more, and 
further informat ion is needed to estimate the individual  
values of  (u~)  and (u~). 

Table  1. Values for mean-square atomic displacements along the principal axes o f  zinc derived from published 
data, and corresponding equivalent Debye temperatures 

Reference 

Jauncey & Bruce (1937)* 

T 
(°K) 

100 
200 
298 
370 
550 

(uz 2> (uz 2> (2uz2+uz 2> OM(aT, CZ) 
(A 2) (A 2) (A 2) (°K) 

0"00329 0"00861 0"0152 223"0 
0"00557 0"0158 0"0270 226"3 
0"00811 0"0299 0"0461 209"2 
0"01064 0"0481 0"0694 189"4 

- -  0.0785 - -  - -  

Wollan & Harvey (1937)]" 85 
295 

0.00279 0.00798 0.0136 222.1 
0.00836 0.0234 0.0401 223.3 

Ryba (1960)t 293 
673 

0"00596 0.0165 0"0284 265"6 
0"0237 0.0545 0"102 210"4 

DeWames, Wolfram & Lehman (1965)$ 298 0.00848 0.0242 

* From the intensity of diffuse scattering from single crystals. 
t From the temperature dependence of the intensity of Bragg reflexions. 
$ From a theoretical model fitted to neutron diffraction data. 

0.0412 221-5 

AC22-2 
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Use of neutron-scattering data 

From coherent inelastic scattering of neutrons the fre- 
quencies of individual branches of the vibrational 
spectrum of a solid can be obtained as functions of 
wave-number. These results must be fitted to a force- 
constant model before mean-square displacements can 
be calculated. For zinc several models with short-range 
forces have been used, and although no such model 
can be wholly valid (Holas, 1965), reasonable fits have 
been obtained with most of the experimental dispersion 
curves (Borgonovi, Caglioti & Antal, 1963; Maliszew- 
ski, Rosolowski, Sledziewska & Czachor, 1965; De 
Wames, Wolfram & Lehman, 1965; Gupta & Dayal, 
1966). The chief failing of the short-range-force models 
is that they do not reproduce the strong dispersion for 
transverse waves propagating in directions perpendic- 
ular to the hexagonal axis with the atoms vibrating 
parallel to this axis. The models overestimate the fre- 
quencies of these modes and consequently overestimate 
O M by an appreciable amount, since modes of this type 
contribute quite strongly to the Debye-Waller effect. 
This can be seen in Fig. 1, where the set of points, 
obtained from the model of DeWames et al. (1965) 
corrected to the equilibrium strain at each temperature, 
lies consistently above the true curve obtained thermo- 
dynamically. 

Modes in which the atoms are vibrating approxim- 
ately parallel to the hexagonal axis contribute primarily 
to (u~) rather than to (UZx). This suggests that the 
shortcomings of the model affect (u~) more seriously 
than (uZ~), and that a reasonable estimate of the true 
values will be provided by the (u~) calculated by 
DeWames et al. and the corresponding (uZ~) consistent 
with the thermodynamic data. At 298 °K this gives 

(u~)=(0.0085 _+ 0.0005) h 2 , 
(u2)=(0.0276+0.0015) A 2, (7) 

where the uncertainty in ( u ~ ) i s  rather arbitrarily 
taken as about a fifth of the difference between the 
value of (2u~ + u2~) calculated from the model and the 
value calculated thermodynamically. The ratio @2)/ 
(u~) is 3.25, in agreement with the suggestion from 
M6ssbauer-effect measurements that 2 2 (uz)/(ux)>_2 
(Housley & Nussbaum, 1965). 

From the calculations of DeWames et al. we can 
obtain (u~> at other temperatures below 298°K, and 
extrapolation above 298 °K is straightforward because 
(u~) is already approaching its limiting high-tempera- 
ture behaviour.* We cannot make direct use of these 
values for (u~) because they refer to a model which 
is fitted to room-temperature data and does not allow 
for thermal expansion. There is no wholly satisfactory 
way of calculating the strain dependence of (u~) from 
thermodynamic data, but an estimate can be obtained 
from the crude approximation that (u~) is affected only 

* If an equivalent Debye temperature Oj_M(T) is defined for 
(ux2), it is found to be effectively constant for T>298°K. 

by expansion along the hexagonal axis and (u~ > only 
by expansion perpendicular to the axis. It then follows 
that the change in (u 2)  due to altering the lattice par- 
ameter a is half the corresponding change in (2u 2 + u 2) 
and so can be calculated from the strain dependence 
of 0 M: 

OM( T; a298, CT ) = OM( T; a r, c T) (aT/a298) 2r-l- (-2). (8) 

With this approximation we obtain the values of (u 2)  
in Table 2, where the errors include a 50Yo uncertainty 
in the strain correction. (u 2) is then obtained by sub- 
tracting 2(u~) from (2u~ + u~). 

Table 2. Mean-square atomic displacements along 
the principal axes of  zinc as functions of  temperature 
T (Uz2> <Uz2> ( 2Uz~ + Uz 2 ) 

(°K) (A 2) (A 2) (A 2) 
0 0.0020 + 0.00015 0.0036 + 0"0003 0.0076 + 0.0003 

50 0.0023 + 0.0002 0.0050 + 0"0004 0.0097 + 0"0003 
85 0.0029 + 0.0003 0.0071 + 0.0007 0"0129 + 0-0004 

100 0"0033 + 0"0003 0.0087 + 0"0008 0.0153 + 0.0005 
200 0"0058 + 0.0005 0.0175 + 0"0011 0.0291 + 0.0007 
300 0.0085 + 0.0005 0-0278 + 0"0015 0.0446 + 0.0012 
370 0'01055 + 0.0009 0.0352 + 0"0020 0.0563 + 0.0016 
400 0.0115 + 0.0010 0.0390+0-0030 0.0620 + 0.0019 
500 0-0147 + 0"0016 0.0513 + 0-005 0"0807+0.0032 
550 0.0164 + 0.0022 0.0576 + 0"006 0.0904 + 0.0038 
600 0"0184+0"0028 0"064+0.007 0"101 +0"005 
673 (0"022)* (0"076)* (0"120)* 

* Definite limits of error cannot be ascribed so near to the 
melting point (692 °K). 

Comparison with X-ray data 

The available X-ray data are listed in Table 1. The 
pioneer studies of Brindley (1936) on the anisotropy 
of the atomic scattering fac tors f r  employed inadequate 
theories and for this reason his values for the mean- 
square displacements are not quoted (they are in fact 
seriously in error). The best-established values based 
on X-ray measurements appear to be those obtained 
at room temperature by Jauncey & Bruce (1937) from 
a study of diffuse scattering (see James (1948) for a 
critical discussion), since these were shown also to give 
a good account of Brindley's measurements. It is 
satisfactory that these values are in fair agreement with 
Table 2. On the other hand, the temperature depend- 
ence of (u2) found by Jauncey & Bruce is in much 
poorer agreement. 

Of the two direct measurements of Debye-Waller 
factors (from the temperature dependence of Bragg 
intensities), those of Ryba (1960) appeared originally 
in an unpublished thesis, and the values quoted in 
Table 1 are taken from International Tables.for X-ray 
Crystallography (1962). Although his absolute values 
at room temperature differ markedly from those of 

2 2 Wollan & Harvey (1937), the ratio (u~)/(u~) is about 
the same (2.75) in each set of measurements. Remark- 
ing on this, International Tables suggested that the 
discrepancy might have arisen because 'Wollan & 
Harvey scaled their intensities to correspond with the 
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early absolute data which are probably incorrect'. 
Rather surprisingly, however, it is now apparent that 
Wollan & Harvey's final results are by far the closer 
to the true values. 

We thank the Science Research Council for a Re- 
search Studentship (R.W.M.). 
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The Crystal Structure of Beraunite 
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Beraunite, a basic hydrated iron phosphate, crystallizes in the monoclinic space group C2/c with 
a0 = 20.646 + 0"005, b0 = 5" 129 + 0.007, co = 19"213 + 0"005/~,/~ = 93 ° 37' + 4' and Z =  8. Crystallochemical 
considerations and a chemical analysis of the ratio FeU/Fe m suggest the formula 

FeU0.5 Fem2.5 (OH)2.5 (PO4)2.3H20 

as the most representative for the mineral. 
The intensities from hOl to h41 were collected by Weissenberg techniques. The analysis of the crystal 

structure was carried out by interpretation of the Patterson function and by three-dimensional Fourier 
syntheses. An isotropic refinement gave a final R index of 0"066 for 898 measured reflexions. 

Fe and P show the usual octahedral and tetrahedral coordination respectively. The average bond 
length is 2"01 A for Fe-O and 1"54/~ for P-O. 

The crystal structure can be outlined as a three-dimensional framework of Fe and P coordination 
polyhedra with empty channels along the screw axes, where free water molecules are located. The 
existence of thick sheets normal to a explains the good cleavage {100}. 

Introduction 

Beraunite is a hydrated basic phosphate of iron, which 
occurs in secondary iron deposits and as an alteration 
product of primary phosphates in pegmatites. 

The mineral was first found by A. Breithaupt in 1841. 
Bo~icky (1867) assigned it to the monoclinic system 
from morphological studies and gave the first chemical 

analysis. Later Frondel (1949), on the basis of a small 
but significant content of ferrous iron revealed by the 
analysis, suggested that  beraunite, like dufrenite and 
rockbridgeite, is properly a basic phosphate of both 
divalent and trivalent iron with a ratio Fe/P of 5:4. 
Beraunite was also studied from morphological, optical 
and chemical points of view under the name eleonorite 
(Nies, 1877; Streng, 1881 ; K/Snig, 1890); Fischer in 1956 

A C 22 - 2* 


